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Immune response in a retrovirus system is modeled by a network of three 
binary cell elements to take into account some of the main functional features of 
T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, 
one of which leads to three fixed points while the other yields bistable fixed 
points oscillating between a healthy state and a sick state in a mean field treat- 
ment. Evolution of these cells is studied for quenched and annealed random 
interactions on a simple cubic lattice with a nearest neighbor interaction using 
inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate 
together with damping (with constant amplitude) for annealed (quenched) 
interaction on increasing the value of mixing probability B from zero to a 
characteristic value Boa (Bcq). For higher B, the average number of T4 cells 
increases while that of the viral infected cells decreases monotonically on 
increasing B, suggesting a phase transition at Bca (Bcq). 

KEY WORDS:  AIDS; virus; cells; immune response; network; cellular 
automata. 

1. I N T R O D U C T I O N  

T h e  s tudy  of  i m m u n e  response ,  us ing  theo re t i ca l  m o d e l s  ~1 5) as well  as 

ce l lu la r  a u t o m a t a  s imula t ions ,  ~6-9) has  a t t r a c t e d  a g rea t  dea l  of  in teres t  in 

recen t  years.  I n t r o d u c t i o n  of  a ce r ta in  a m o u n t  of  an t igens  ins ide  the  b o d y  

as a resul t  o f  v i ra l  infec t ion ,  bac te r i a l  a t t ack ,  o r  v a c c i n a t i o n  s t imula tes  the  

i m m u n e  sys tem to  r e spond .  I m m u n e  sys tems  cons is t  o f  a va r i e ty  o f  ce l lu la r  

e l emen t s  wh ich  p a r t i c i p a t e  in cha in  r eac t ions  wi th  a c o m p l e x  web  of  

in te rac t ions ,  l e ad ing  to  v i rus  g r o w t h  a n d  l y m p h o c y t e  expans ion .  (1~ T h e  
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list of varieties in immune response is large and growing, and the reaction 
mechanism of the response is complex and varied. Although there exists a 
huge amount of experimental data for the studies ranging from microscopic 
facts [i.e., the study of cell transformation and growth (clonal expansion), 
structural transformation of macromolecules such as proteins in expressing 
the genetic codes, etc.] to macroscopic findings (i.e., the study of the 
growth of viral infected cases, overall symptoms, and related statistics), 
understanding the immune response via theoretical means is limited. 
However, attempts have been made in recent years to study some of the 
problems involving general aspects such as immunological memory in a 
neural-network-type model for the idiotypic network, (3"4) control of 
immune response using models of interacting binary cells, (5-9) etc., as well 
as specific issues such as viral growth and lymphocyte expansion in 
response to the retrovirus (2) for the acquired immune deficiency syndrome 
(AIDS). Since the binary cell interacting models (~~ have shown some 
success in describing some of the general aspects of immune response, I 
limit myself here to such simple models but attempt to address a more 
specific issue of viral growth and lymphocyte expansion. 

In Section 2, I briefly describe the cellular components of the immune 
system with reference to retrovirus(l~); this may help in an understanding of 
the simplifications used in modeling which is introduced in Section 3. In 
Section 4, I give the details of implementing the basic interactions of the 
model on a cubic lattice with a nearest neighbor interaction. Results are 
presented in Section 5, with a summary and discussion in Section 6. 

2. I M M U N E  SYSTEM A N D  I M M U N E  RESPONSE 

In immune response, (1(v12) multipotential stem cells differentiate into 
three main classes(m: (i)B cells (from bone marrow), which, on contact 
with antigen, differentiate into plasma cells which secrete antibody and 
memory cells responsible for lasting immunity. (ii) T cells, which mature in 
the thymus gland and then are released into the blood or lymph, where 
they take on distinct biochemical and functional identities in which two 
types of T4 cells act as helper and inducer, respectively, while two types of 
T8 cells act as cytotoxic (killer) and suppressor. T8 cells recognize the 
antigens which contain class I MHC (Major Histocompatibility Complex) 
proteins (these molecules are present on the surface of nucleated cells). On 
the other hand, T4 cells respond to antigens which contain class II MHC 
proteins, which are found primarily on the surface of antigen-presenting 
cells. (iii) Myeloid stem cells which produce macrophages among various 
classes of white blood cells. The macrophages, one of the main antigen- 
presenting cells, interact with virus or other intruder in a highly specific 
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way and display the antigenic protein fragments on the cell membrane 
together with class II MHC proteins, which are then recognized by T4 cells. 
Apart from these three main classes of cells, there are other cells which also 
participate in immune response. (H) All these cells act randomly but 
cooperatively in a very complex fashion to fight against viral infection. 

In general, when a virus invades the body, the immune system 
responds in a variety of complex ways depending upon the kind of infec- 
tion. In some viral infections, natural killers respond at first, followed by a 
complex interaction and reaction of virus-infected cells with macrophages; 
helper and inducer T4 cells then come into play, which induces cytotoxic 
T8 cells to fight against the infection. While the plasma cell produces 
antibodies, suppressor T8 cells help to shut down the T-cell response and 
memory cells guard against further infection. The immune reaction involves 
interactions among many cellular elements which pass through various 
stages of their complex path of transformations during the course from 
beginning to complete recovery; we leave the specific details to the experts 
in this field. 

In AIDS, (H) viruses have the ability to avoid destruction by the 
immune system and there may be several possibilities to achieve this. One 
possibility could be that its proteins change frequently because of mutation 
causing any antigen-specific immune response to miss its mark. Again 
several interrelated possibilities can be suspected. For example, the virus 
may undergo steady genetic change, probably due to its rapid and 
inaccurate replication leading to genetic drift, lnstead of evasion, the 
human immunodeficiency virus (HIV) seems to avoid destruction by 
preemptively destroying the immune system which produces a lasting 
depression of immune response. It is believed that the cause of this deadly 
infection is a retrovirus which involves a complex interaction on a 
microscopic level in the biological sequence of molecular transformation 
involving DNA, RNA, and proteins in reverse order of sequences to that of 
its usual biological sequence in transcribing the genetic information. Once 
this happens, the immune system fails to respond to other infections as 
well. On a microscopic level it is rather difficult at present to understand 
the complex reaction among the molecules, cells, and their transformations. 
Even the experimental data sometimes lead to conflicting speculations. 
However, on a global scale, it is believed that in the case of HIV, immuno- 
suppression results from viral infection of T4 lymphocytes and here we 
address the effects of interplay between these interacting components. 

In culture the HIV (H) seems to alter and ultimately slow the growth of 
infected T4 cells while other kinds of T cells continue to multiply normally. 
As inducer and helper, T4 lymphocytes play a vital role in immune 
response and therefore the reduction of the T4 cell population has severe 



1000 Pandey 

consequences in failing immunity. B cells are unable to produce adequate 
quantities of specific antibody to the virus due to lack of appropriate 
amount of helper T4 cells, which also hampers the response of cytotoxic T8 
cells. The crucial roles of B cells (as memory cells for lasting immunity and 
a constant production of antibodies) and of T cells (T8 suppressor cells) to 
shut down the response and macrophages to prepare infected cells are 
severely interrupted. It is extremely difficult to incorporate all interacting 
cellular elements in a theoretical model in order to study the kinetics of 
evolution of these cells. Nevertheless, to initiate a preliminary study it is 
worth looking into some of the essential features of main cellular elements; 
toward this end I introduce here a simplified model. 

3. M O D E L  

Consider a network ~s' lo) of these binary cell types in which cell type 1 
represents the T4 cell, cell type 2 the T8 cell, and cell type 3 the antigen 
produce by virus; I call cells of type 3 the viral infected cells. Here, I do not 
distinguish between different functions of the T4 cells and that of the T8 
cells, although ! mainly emphasize the helper function of T4 cells and the 
killer function of T8 cells (i.e., cytotoxic T8 cells). For simplicitly, I do not 
consider explicitly the B cells, antigen-producing cells, and natural killer 
cells along with other cellular elements of the immune system. In a sense, 
the aftereffects of the immune response (suppressor function of T8 cells and 
memory function of the B cells), i.e., the immune resistance, is ignored, and 
therefore the model may only be useful to understand some of the features 
during the initial stage of the response. The components of the immune 
system (i.e, the cells) are embedded inside the body in a space shared 
by organisms along with body fluids. The cells are mobile in an 
inhomogeneous three-dimensional space and to take into account their 
conformational morphology along with other constraints (say, the steric 
hindrances) on their multiplication and expansion adds more complexities. 
I, however, model the host space for the cells as a three-dimensional lattice 
in which all the lattice sites have potential to accommodate each type of 
cell, neglecting the mobility of the cells altogether. In this approximate 
model, I do take into account some of the structural constraints in which 
two cells of the same type are not allowed to occupy the same lattice site, 
whereas cells of different types (say, a T4 cell, a T8 cell, and a viral infected 
cell) can be at the same site; a lattice site, therefore, represents a local 
space of the equivalent biological system (of thymus as an example). 
Inhomogeneity and randomness are incorporated via random interactions 
among the cells with their random growth and decay. At this stage, only 
some of these basic features of the random chain reaction of the immune 
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response are considered in this primitive model, which will be further 
developed to take into account more microscopic details. In the following, 
I first analyze the interactions among the three cell types, in the so-called 
mean field description, where a cell at a site interacts with other cells of the 
same type at all other sites; all sites becomes equivalent in this infinite- 
range interacting neural network type of model, which reduces the problem 
to a single-site interacting network. Nearest-neighbor interacting networks 
will be considered in the next section. One may write a variety of three- 
cell interactions to describe some of the features of immune weakness 
mentioned above; I consider two such interactions here. 

(i) I define the current status of a cell type i by IC(i), which acquires 
binary(5.1o) values 0 (false) and 1 (true) for its low and high concentration, 
respectively. Similarly, the new binary state of the cell type i is represented 
by ICN(i), which emerges after the interaction. I propose a possible 
interaction among the 4 million mathematical possibilities as 

ICN(1 ) = IC(1 ) .and. [.not. IC(3) ] 

ICN(2 ) = IC(1 ) .or. IC(2) ( 1 ) 

ICN(3) = [IC(1).and. IC(3)]  .and. [.not. IC(2)] 

where the first Boolean expression describes that T4 cells can grow at a site 
when the concentration of viral infected cell is low at that site. The second 
expression describes the self-interaction of T8 cells, which expands also 
with the help of T4 cells. Since the cytotoxic T8 cells (cell type 2) attempt 
to kill only those viral cells which are prepared by helper T4 cells (celt 
type 1), viral infected cells may grow when the concentration of cytotoxic 
T8 cells is low and this mechanism is represented by the third expression. 
Note that this equation involves only one site with 23 possible states of 
three cell types {IC(1), IC(2), IC(3)} and that all sites of a lattice can be 
treated independently with this interaction (I) in the spirit of the mean field 
description of Weisbuch and Atlan. (51 If we start randomly from one of 
these eight initial states, then this interaction (1) leads to three fixed points: 
immunized {010}, healthy but susceptible {110}, and perfectly healthy 
{000} with probabilities 1/2, 1/4, and 1/4 respectively. 

(ii) Alternatively, I propose the following interaction: 

ICN(1 ) = .not. [IC(1 ) .and. IC(3) ] 

ICN( 2 ) = IC(1 ) .or. IC(2) (2) 

ICN(3) = .not. [IC(1 ) .and. IC(3) .and. IC(2)]  

One can interpret these logical expressions in the same way as those of 
Eq. (1). Here the first expression implies that cell type 1 can expand when 

822/54/3-4-28 
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both cell types 1 and 3 or one of the two are in low concentration, while 
the third expression suggests that viral infected cells (type 3) can grow if 
either one of these is in low concentration; the second expression remains 
the same as that in Eq. (1). Starting from any one of the eight initial con- 
figurations randomly, this interaction leads to an oscillatory state of sick 
{ 111 } and immunized {010}. To my knowledge, such oscillatory behavior 
in the flow phase space of interaction is observed for the first time in the 
study of immune response via a network of binary cellular elements. 

4. MIXED INTERACTION ON A S IMPLE CUBIC LATTICE 

Now I consider nearest neighbor interactions among the cells of the 
same type (intracell interactions) on a simple cubic lattice. The basic 
interactions (1) and (2) of the preceding section describe only two features 
of the numerous possible effects caused by retrovirus in immune response. 
In order to understand a variety of mysterious reactions exhibited by 
retrovirus systems, it is worth exploring a number of complex interactions 
among various cells. To understand the irregular course of reactions in 
such retrovirus systems and their time-dependent effects (such as varying 
incubation time), I attempt to incorporate randomness using interac- 
tions (1) and (2). I study two kinds of random binary interactions(9'13'~4): 
(a) Annealed interactions in which, at each time step, each lattice site is 
randomly assigned interaction (1) with probability B and interaction (2) 
with probability 1 - B with 0 ~< B~< 1; and (b) quenched interactions, 
where interactions (1) and (2) are assigned with probabilities B and 1 -  B 
to cells at each lattice site randomly at the beginning and are kept the same 
throughout the evolution of the simulation. Rules for nearest neighbor 
interactions on the lattice and the basic computer algorithms are the same 
as those of a previous study (9~ that uses similar random mixing for the 
inhomogeneous cellular automata. In the following I briefly mention the 
procedure of implementing these rules. 

Each of the three type of cells is placed at each lattice site. A fraction p 
of each type of these cells is assigned a binary state 1 (of high concen- 
tration). First we select a cell type, say k, with its current binary state IC(k) 
at site i; then we add the binary state of this cell with those of its six 
neighboring cells of the same type k. If this sum (logical or) of seven binary 
states of the cell type k is positive, then a temporary state s'(k) of high con- 
centration [IC'(k)= 1] is assigned to the cell type k at site i; otherwise, 
the binary state of this cell type remains zero. Using the same interaction 
rule of addition of binary states of the neighboring cells of the same type, 
each of the three cells (k=  1, 2, 3) is assigned a temporary binary state. 
Now, all three cells at site i interact with each other with a temporary 
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binary state according to specified intercell (quenched or annealed ran- 
dom) interactions, Eq. (1) or (2), which govern the final states of these cells 
at the next time step. Similar updates are made for three cell types at all 
lattice sites and this completes one time step of the simulation. This process 
of updating the configurations of the cells is repeated again and again for a 
desired number of time steps each with a number of independent sample. I 
have studied the temporal evolution of the average number of three cell 
types as a function of mixing probability B with various initial concen- 
trations p for both quenched and annealed interactions which are discussed 
in the following. 

5. RESULTS 

5.1. Annealed Interact ion 

I use 60 x 60 • 60 lattices with five independent samples to produce 
data for the growth of cells for various initial concentrations p. A typical 
variation of the number of T4 cells, T8 cells, and viral infected cells is 
presented in Fig. 1 for various values of mixing probability B. We know 
that at extreme values of B there is no random mixing and either fo the two 
interactions (1) and (2) on the lattice governs the evolution. For B =  0, we 
observe that the number of T4 cells and viral infected cells oscillates 
between two extreme values of 0 and the size of the sample (216,000); the 
number of T8 cells approaches very fast to a maximum saturation value, 
i.e., the size of the sample. Here the two types of cells, the T4 cells and viral 
infected cells, stay together at the same sites and this is obvious from the 
first and third Boolean expressions of Eq. (2) when T8 cells expand to all 
sites, i.e., ICN(1)= ICN(3) for ICN(2)= 1; the oscillations in their number 
is due to simultaneous updating of these cell types. A similar oscillation has 
been also observed by Dayan et aL (6) in a somewhat different study. On the 
other hand, at B = 1, there is no oscillation in the variation in the number 
of cells of types 1 and 3; instead, the number of T4 and T8 cells increase 
with time, expanding to all lattice sites, and the number of viral infected 
cells goes down to its zero level. 

On increasing the value of mixing probability B, the numbers of T4 
cells and viral infected cells still oscillate, but the amplitude of oscillations 
decreases with time, which implies that this interacting system has dam- 
ping. The higher the value of B, the faster is the decay of oscillations, 
though the numbers of T4  cells and viral infected cells remain equal. This 
trend continues until a certain value B,.a (~0.7) beyond which the number 
of T4 cells increases with time, approaching a certain asymptotic value 
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N4(B), which increases with B. The number of viral infected cell, on the 
other hand, quickly reaches a constant value Nv(B), which decreases on 
increasing B below Na(B). I define an order parameter M(B) as the 
difference of these two asymptotic numbers, 

M(B) = N4(B) - N~(B) (3) 

A plot of M(B) versus B for various values of initial concentration p is 
shown in Fig. 2; the saturation numbers are calculated from the runs up to 
500 time steps, although some test runs were made for time steps up to 105 
in order to check the saturation time. As is evident, apart from a little 
statistical fluctuation, the order parameter M(B) remains zero below a 
characteristic value Bca and it increases monotonically for B above /?ca, 
which suggests a phase transition at about Bca. The qualitative behavior 
remains the same at all initial concentrations p. Note that cells are 
interacting with two kinds of interactions (1) and (2) randomly and that B 
is only a probabilistic measure of the switching on of cell interactions of 
one kind over the other. It is rather difficult at this stage to provide a more 
quantitative analysis of the phase transition than to look into the variation 
in the cell number as a function of B. I hope that a more realistic model 
will address this issue further. 
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5 .2 .  Q u e n c h e d  I n t e r a c t i o n s  

Statistics for the s imulat ion data here is the same as that of  Sec- 
t ion 5 .h A typical variat ion of  the number  of  three cell types is presented in 
Fig. 3 for various values of  mixing probabil ity B. I have already discussed 
the results at the extreme values of  B. For  B = 0, we saw that the numbers  
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of T4 cells and viral infected cells oscillate with a maximum amplitude 
which stays constant after few initial steps. For intermediate values of the 
mixing probability B, the numbers of T4 cells and viral infected cells still 
oscillate in time but their amplitude of oscillation depends on the mixing 
probability B, while the number of T8 cells reaches quickly to a saturation 
value, the size of the system. On increasing the value of B from zero, the 
amplitudes of oscillations for both T4 and viral infected cells remain equal 
and approach a constant value in time that decreases monotonically until 
B approaches a characteristic value Bcq (~0.66) (see Fig. 4). Again for B 
below Bcq both T4 cells and viral infected cells here stay together at the 
same sites. Therefore the average number about which these oscillations 
take place is the same for both T4 cells and viral infected cells (Fig. 4a). 
Beyond this characteristic value (i.e., for B > Bcq), T4 cells and viral infec- 
ted cells no longer stay together. The amplitude of oscillations for the viral 
infected cells continues to fall monotonically and reaches its limiting value 
of zero at B = 1. The amplitude of oscillations for the T4 cells depends non- 
monotonically on the mixing probability B above Bcq; it first increases and 
then decreases as a function of B (Fig. 4b), showing a maximum at about 
Bg0.8 ;  the maximum peak becomes sharper on increasing the value of 
initial concentration p. 

6. S U M M A R Y  A N D  DISCUSSION 

I have introduced a simple model for the interacting network of three 
binary cells which takes into account the primary functions of T4 cells, T8 
cells, and antigens produced by virus. I have proposed two basic interac- 
tions, one which gives rise to three fixed points while the other leads to an 
oscillatory behavior between sick and healthy states even in the mean field 
case; such oscillatory behavior is found for the first time as far as I know 
for a network of binary cells in the study of immune response. (5'1~ These 
two basic interactions are randomly mixed with a probability B to form 
quenched and annealed interactions among the three cellular elements. 
Evolution of the three cell types is studied on a simple cubic lattice for a 
nearest neighbor intersite, intracell interaction using inhomogeneous 
cellular automata with both quenched and annealed intercell interactions. 
While expansion of cell type 2 (i.e., T8 cells) seems unaffected, I find 
interesting results for the growth of viral infected cells and T4 cells. For 
B =  0 on the lattice, T4 cells and virus (viral infected cells) always stay 
together, i.e., they coexist infected. The other extreme case, B = 1, indicates 
a dominant role of immune response where T4 cells grow to a maximum 
value and viral infected cells tends to vanish. 
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For quenched interaction, the numbers of both T4 cells and viral infec- 
ted cells oscillate with equal amplitude on increasing the mixing probability 
B form zero to characteristic value Bcq. Above this characteristic value, 
both types of cells oscillate independently about their mean number, say 
(N4(B) )  and (N,(B)) .  I find that (N4(B))  increases and (Nv(B)) 
decreases monotonically with B above Bcq ; the oscillation in the number of 
T4 cells about the mean value (No(B) )  depends nonmonotonically on B, 
while the oscillation in the number of viral infected cells decreases 
monotonically with B. Thus, T4 cells win over virus for B above Bcq , below 
whch both coexist, and this behavior suggests a phase transition at Bcq. 
There is a similar sign of phase transition for the annealed interaction at 
about the same value of the mixing probability Bca above which the 
difference in the numbers of the two cells, i.e., M(B)=N4(B)-N~(B) ,  
increases with B. For  B below Bc~ in the annealed case, even though the 
order parameter M(B) is zero, variation in the development of both T4 
cells and viral infected cells exhibits a damped oscillation about the same 
mean; this may be interpreted as a continued coexistence between immune 
response and virus sustaining a long-lasting infection. Thus, the order 
parameter M(B) signifies the degree of health. 

Thus, this simple model does capture some of the features of the 
immune response to retrovirus. As stated in the Introduction, the model 
proposed here is very simple and offers an opportunity for further exten- 
sion and development. For  example, instead of limiting oneself to three 
interacting cell types, one may consider seven (two T4 cells, two T8 cells, 
two B cells, and an antigen-producing cell such as macrophages) or more 
cells to incorporate more details of the immune response. Further, instead 
of considering only binary cells and a discrete lattice, one should consider 
cells with continuous variables on lattice, continuum, and random space; I 
will continue some of these investigations in the future. 
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